多协议以太网关用户手册

(SG-U6C0-1.0)

V 1.0

北京鼎实创新科技股份有限公司

2016.03

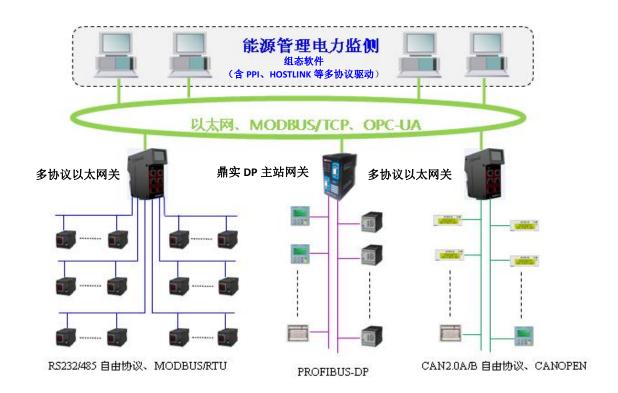
目录

第一章 产品	概述	3
1.1 产品	l 系列	3
1.2 产品	品用途	3
1.3 产品	·	4
第二章 产品	介绍	5
2.1 产品	l 布局	5
2.2 产品	品尺寸及安装	. 5
2.3 技术	₹指标	7
2.3.	.1 网口性能	. 7
2.3.	.2 串口性能	. 8
2.3.	3 液晶屏诊断性能	. 9
2.3.	.4 模式设置1	L1
2.3.	.5 控制字及状态字计算1	L1
2.3.	.6 配置软件	L1
2.3.	.7 模块供电1	12
2.3.	.8 拨码开关	12
2.3.	.9 防护等级	13
2.3.	.10 环境条件	13
2.3.	.11 机械特性	13
2.3.	.12 EMC 等级	13
第三章 产品	配置与调试	L4
3.1 软件	+安装1	L4
3.1.	.1 安装环境	L4
3.1.	.2 安装步骤	L4
3.2 软件	+介绍1	16
3.3 工程	星组态实例	27
3.3.	1 数据共享模式2	27
3.4 固件	+升级3	35
第四章 有毒	有害物质表3	38

第一章 产品概述

1.1 产品系列

本产品是公司现有产品 ETH-485-MRTU2 的升级产品,产品在处理速度及其他性能上有了很大提升,提供更多的现场总线通信接口,更灵活的以太网连接方式,更丰富的诊断功能,同时提升 EMC 性能,为现场设备通信及接入互联网提供软硬件平台。


本产品手册适用于 SG-U1C0-1.0、SG-U2C0-1.0、SG-U4C0-1.0、SG-U6C0-1.0 系列产品。

1.2 产品用途

网关采用数据共享模式,以存储器共享为原理,具有数据刷新速度快、客户机编程简单的特点,网关接收以太网上的数据并提供给串口 MODBUS 协议串口网络使用,同时也可以将串口网络中的数据提供给以太网进行利用,实现不同网络中的互联。网关在串口一侧作为MODBUS RTU 主站来使用,每个串口至多连接 31 台从站设备,共可接 31*6=186 台。在MODBUS TCP/IP 一侧作为服务器来使用,可以同时连接 6 台客户机。

此产品多用于车间多协议设备联网,搭建车间底层信息网络平台,为各种小型 PLC(欧姆龙、三菱、台达等)、检测仪表(基于 RS232/485、CAN2.0A/B 自由协议)、数控系统、机械手接入车间信息化 MES 提供解决方案。

1.3 产品特点

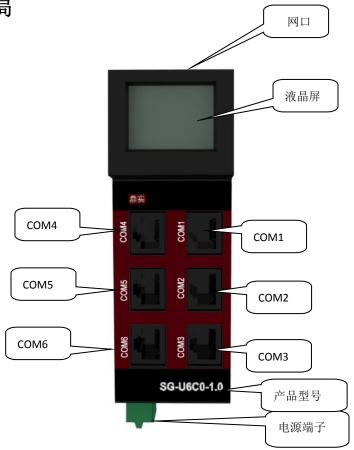
特点 1: 本网关串口侧通讯不依懒于以太网侧客户端。

使用数据共享模式时, 串口按照配置自主运行, 不会由于客户端通讯中断导 致串口侧停止工作。

特点 2: 本网关数据刷新不依赖于以太网侧客户端。

使用数据共享模式时,本网关采用数据共享方式读取数据并非透明协议传输, 因此不受以太网客户端侧拥塞影响。

特点 3: 本网关数据不会由于以太网侧客户端问题导致现场数据丢失。


当以太网侧客户端故障后本网关有一定的数据缓存,可以在系统恢复后将缓存数据上传,避免丢失现场数据,提高系统的稳定性。

特点 4: 适合 MES 数据要求的接口和数据组态。

与网关配合应用的信息集成系统软件,具有专为 MES 系统设计的数据接口。

第二章 产品介绍

2.1 产品布局

2.2 产品尺寸及安装

1.1、外形: 尺寸:

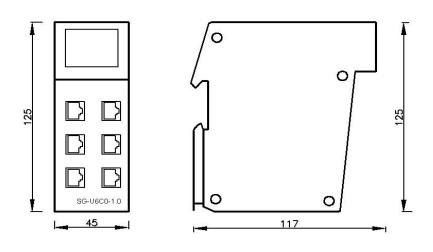


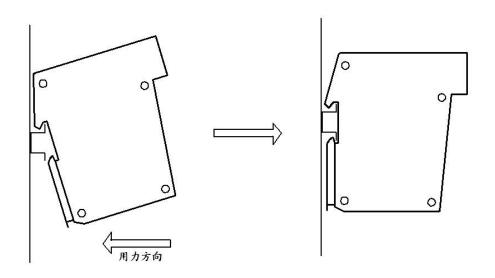
图 1 SG-U6C0-1.0 外形尺寸图

1.2、安装:

安装组件:

35mm 宽导轨

安装与拆卸示意图:



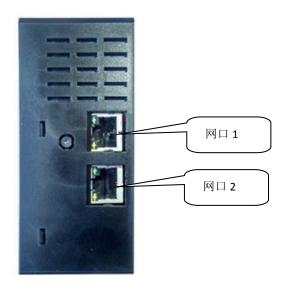
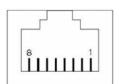

图 2 安装过程示意图

图 3 拆卸过程示意图

2.3 技术指标

2.3.1 网口性能


- 端口数目:2(内置交换机)
- 支持协议: MODBUS TCP 服务器;
- 最大连接数: 6
- 支持功能码: 01H, 02H, 03H, 04H, 05H, 06H, 0FH, 10H;
- IO 数据空间:
 - ◆ 零区: 8192 位
 - ◆ 一区: 8192 位
 - ◆ 三区: 2000 字
 - ◆ 四区: 2000 字
- 从站寻址方式:数据区寻址(基于地址映射表),远端从站寻址(透明寻址方式)
- 支持数变即发功能
- 最大串口侧 modbus 配置条数 256 条

以太网端口采用 RJ45 接头,平行线、交叉线可自适应。如果想得到更加稳定的通讯保障, 获得更强的抗干扰能力,建议使用工业以太网网线。工业以太网网线带有屏蔽层,具有很强的屏蔽外界信号抗干扰的能力,使用这种网线能够大大提升通讯系统的稳定性。

2.3.2 串口性能

- 连接器: RJ45, 带绿色 LINK(链路建立)和橙色 ACK(链路活动)指示灯
- 接口数目:6
- 通信协议: MODBUS RTU
- 电平标准: RS232,RS485
- 是否带收发指示灯:带
- 所带从站个数: RS232——每口1个从站, RS485——每口最多31个从站
- 最大配置操作条数: 256
- 通信参数:
 - 波特率: 2400、4800、9600、19200、38400、57600、115200(硬件最高支持到 250kbps)
 - 数据位:8
 - 校验位: 奇校验, 偶校验, 无校验
 - 停止位: 1、2
 - 操作延迟可配置
 - 等待超时时间可配置
- 隔离电压: 1500V
- 终端电阻: 内置 120 欧姆终端电阻
- 电源短路保护:支持

RJ45 引脚信定义:

引脚	名称	描述		
1	RS232_TX	RS232 接口发送数据信号		
2	RS232_RX	RS232 接口接收数据信号		
3	TTL_RTS	5V 电平的请求发送信号,发送时为高,接收时为低		
4	RS485_B	RS485 接口差分线对 B-信号		
5	RS485_A	RS485 接口差分线对 A+信号		
6	RS232_RTS	RS232 接口请求发送信号		
7	5V	5V 电源正		
8	0V	5V 电源负		

2.3.3 液晶屏诊断性能

● 色彩: 单色,黑字,白色背光

● 尺寸: 30mm*23mm

● 像素点: 128*64

● 显示字符数: 21 字符/行*8 行

液晶屏具体诊断信息如下表:

厅号\字段	端口标签	端口参数	端口状态			
	Initializing 表示设备初始化过程中,初上电或重启时显示该信息					
	Run as test mode 表示设备运行在测试模式,拨码开关 bit1 为 ON 时启动设备显示该信息 Run as dataaddr mode 表示设备运行在 MODBUS 数据区寻址方式(工作模式的一种),拨码开关 bit 为 OFF 且用户配置有效且配置为 MODBUS 数据区寻址方式时启动设备显示该信息					
1	Run as slaveaddr mode 表示设备运行在远端从站寻址方式(工作模式的一种),拨码开关 bit 1 OFF 且用户配置有效且配置为远端从站寻址方式时启动设备显示该信息 Configuring 表示设备配置过程中,更改设备网络参数或 IO 配置时设备显示该信息					
	IO config is error 表示设备 IO 配置	错误,工作模式时检测到用户配	配置错误时显示该信息			
2	E1/E2 表示两个网络接口,两个 网口的信息共用一行,交替显示	xxx.xxx.xxx 表示对应网口 的 IP 地址	ON 表示对应网口连通,可以利用对应 IP 地址连接网关 OFF 表示对应网口断开或对应			
			CRS 表示对应网口发生 IP 冲突			
3	COM1 表示串口 1, 对应连接器 Port1	baudrate-databit checkbit	OFF表示对应串口未配置 NOP表示对应串口检测到被止的从站 ROK表示对应串口报文接收			
4	COM2 表示串口 2,对应连接器 Port2	第一个字段为波特率,用数 值表示对应的波特率; 第二个字段为数据位,固定 为8: 第三个字段为校验位,E表示 偶校验,O表示奇校验,N表 示无校验;				
5	COM3 表示串口 3,对应连接器 Port3					
6	COM4 表示串口 4, 对应连接器 Port4		RTO 表示对应串口报文接收起时			
7	COM5 表示串口 5,对应连接器 Port5		RER 表示对应串口报文接收包 误(从站返回 MODBUS 错误码			
8	COM6 表示串口 6, 对应连接器 Port6	第四个字段为停止位,用数 字表示停止位数	或接收报文奇偶校验错误)			

2.3.4 模式设置

SG-U6C0-1.0 模式设置,具体设置见拨码开关介绍。

Bit 1 为 ON 时 网络接口将以默认网络参数启动 默认 IP: 192.168.1.15

为 OFF 时 网关将以自定义 IP 地址运行

Bit 2 为 ON 时 测试模式,网关以出厂工程配置启动运行

为 OFF 时 客户配置运行模式

Bit 3 未使用

Bit 4 为 ON 时 固件升级模式

出厂配置工程如下:

■ 串口通信参数: 9600-8-N-1

■ 寻址方式: MODBUS 数据区寻址

■ 操作延迟: 0

■ 等待超时时间: 500ms

■ 远端从站地址: 1

■ 执行操作:

◆ COM1 读远端从站零区 0 地址开始 8 个位映射到网关零区 0 地址开始

◆ COM2 写远端从站零区 0 地址开始 8 个位映射到网关零区 8 地址开始

◆ COM3 读远端从站一区 0 地址开始 8 个位映射到网关一区 0 地址开始

◆ COM4 读远端从站三区 0 地址开始 8 个字映射到网关三区 0 地址开始

◆ COM5 读远端从站四区 0 地址开始 8 个字映射到网关四区 0 地址开始

◆ COM6 写远端从站四区 0 地址开始 8 个字映射到网关四区 8 地址开始

2.3.5 控制字及状态字计算

控制字定义在 MODBUS TCP/IP 的 4 区内,状态字定义在 3 区内,从站地址为 N:

串口号	控制字地址	状态字地址
COM1	402000+N	302000+N
COM2	402256+N	302256+N
COM3	402512+N	302512+N
COM4	402768+N	302768+N
COM5	403024+N	303024+N
сом6	403280+N	303280+N

2.3.6 配置软件

SG-U6C0-1.0 的配置是通过我公司自主研发的上位配置软件 ModConfi 进行配置的,此软件支持在 XP、WIN 7 、WIN8 等系统安装,安装包见产品光盘或与我公司联系索取,具体如何使用可参考本手册第三章或查阅软件帮助。

2.3.7 模块供电

电源端子接线定义:

端子	PIN	涵义	备注
100	1	第一路电源+24V DC	
	2	第一路电源 GND	
100	3	第一路电源 PE	
	4	第二路电源+24V DC	
	5	第二路电源 GND	
	6	第二路电源 PE	

电源电压: 24VDC (允许: 19.2VDC~28.8VDC)

额定电流: 138mA 额定功率: 3.3W

2.3.8 拨码开关

拨码开关位	功能	描述
Bit1	默认网络参数	为 ON 表示网络接口以默认网络参数启动(IP: 192.168.1.15),为
DILI		OFF 表示以用户配置的 IP 地址启动
Bit2	测试模式	为 ON 表示网关以出厂工程配置启动运行,否则以用户工程配置启动
BILZ		运行
Bit3	未使用	
Bit4	固件升级模式	
其他	保留	

注意: 当拨码改变后需将模块断电重启, 重启后修改的参数才能生效!

2.3.9 防护等级

防护等级: IP 20

2.3.10 环境条件

运输和存储温度: -40° ~+70° 工作温度: -25° ~+55° 工作相对湿度: 95% (无凝露)

2.3.11 机械特性

外壳主体: ABS+PC

尺寸: 高: 125mm 宽: 45 mm 深: 115 mm

重量:约 312g

2.3.12 EMC 等级

静电放电: IEC61000-4-2, 接触放电 4kV, 空气放电 8kV;

电快速脉冲群: IEC61000-4-4, 3kV

浪涌抗扰度: IEC61000-4-5, 线地 2kV, 线线 1kV

第三章 产品配置与调试

3.1 软件安装

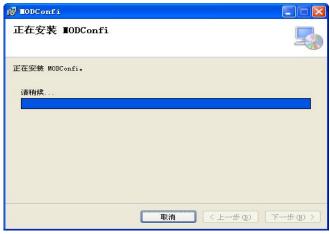
3.1.1 安装环境

系统配置要求	
操作系统	Windows XP(Service Pack 3)以上版本
CPU	Intel Pentium 以上
内存	1GB 以上
显示	1024*768 以上
硬盘	1G 以上硬盘空间

3.1.2 安装步骤

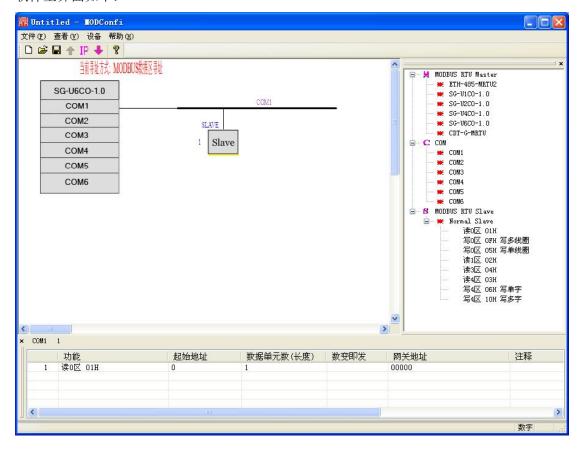
在公司光盘中找到此产品文件夹,在文件夹内双击 MODConfiSetup2.0.msi 进行安装,

MODConfiSetup2.0.msi 稍后弹出对话框,如下图:


点击下一步 出现下图所示:

选择安装目录,一般默认即可,继续点击下一步

继续点击下一步:



当出现下图时表明安装成功,并且桌面会自动创建图标。

3.2 软件介绍

软件主界面如下:

3.2.1.1 访问设备信息

在线读取模块状态需添加被测模块的 IP 地址,点击菜单 IP 图标,弹出访问参数对话框,如下图:

主站信息查看及寻址方式设置

查看设备的状态信息,包括设备 ID、设备版本号、设备序列号、固件编译时间、设备 MAC 地址、设备运行状态。

设置设备的寻址方式,包括 MODBUS 数据区寻址和远端从站寻址两种寻址方式。

3.2.1.2 网络参数设置

对设备的网络参数进行设置,设备网络参数包括两个网口的 IP 地址、子网掩码、

网关、MODBUS 端口。下载到设备。

3.2.1.3 COM 属性设置

对相应的 COM 口属性进行设置,包括波特率、校验位、停止位、数据位。

3.2.1.4 从站属性设置

对从站的相关属性进行设置,其中包括从站地址、设备名称、报文发送延时、应答 超时时间、是否使能对该从站的访问。

从站地址取值: 1-247

设备名称取值:最大长度为64的字符串

报文发送延时取值: 0-3000 应答超时时间取值: 10-3000

3.2.1.5 I/O 添加及设置

从站属性		
从站地址:	1	
设备名称:	SLAVE	30
报文发送延时:	0	wz
应答超时时间:	500	ms
配置字: ☑ 从站操作	使能	
注意:报文发送间隔 <i>[</i> 确定	应答超时时间取价	直为10的整数倍取消

添加"读 0 区 01H"命令

添加"读 0 区 01H"命令,需要用户输入"起始地址"、"长度"和"注释"信息。

起始地址取值: 0-65535

长度取值: 1-2000

地址访问范围(起始地址+长度): 0-65535

添加"写 0 区 0FH 写多线圈" 命令

添加"写 0 区 0FH 写多线圈" 命令,需要用户输入"起始地址"、"长度"、 "注释"和"是否使能数变即发"信息。

起始地址取值: 0-65535

长度取值: 1-1968

地址访问范围(起始地址+长度): 0-65535

注释取值:最大长度为 256 的字符串

添加 "写 0 区 05H 写单线圈" 命令

添加 "写 0 区 05H 写单线圈" 命令,需要用户输入"起始地址"、 "注释"和 "是否使能数变即发"信息。

起始地址取值: 0-65535

长度取值:1

地址访问范围(起始地址+长度): 0-65535

添加"读1区 02H"命令

添加"读 1 区 02H"命令,需要用户输入"起始地址"、"长度"和"注释"信息。

起始地址取值: 0-65535

长度取值: 1-2000

地址访问范围(起始地址+长度): 0-65535

注释取值:最大长度为 256 的字符串

添加"读3区 04H"命令

添加"读 3 区 04H"命令,需要用户输入"起始地址"、"长度"和"注释"信息。

起始地址取值: 0-65535

长度取值: 1-125

地址访问范围(起始地址+长度): 0-65535

添加"读4区 03H"命令

添加"读 4 区 03H"命令,需要用户输入"起始地址"、"长度"和"注释"信息。

起始地址取值: 0-65535

长度取值: 1-125

地址访问范围(起始地址+长度): 0-65535

注释取值:最大长度为 256 的字符串

添加"写 4 区 06H 写单字"命令

添加"写 4 区 06H 写单字"命令,需要用户输入"起始地址"、"注释"和"是 否使能数变即发"信息。

起始地址取值: 0-65535

长度取值:1

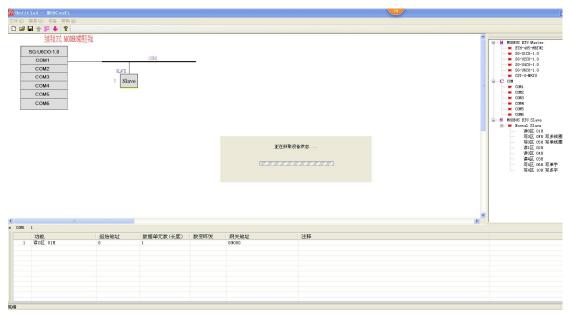
地址访问范围(起始地址+长度): 0-65535

注释取值:最大长度为 256 的字符串

添加"写 4 区 10H 写多字"命令

添加"写 4 区 10H 写多字"命令, 需要用户输入"起始地址"、"长度"、"注释"和"是否使能数变即发"信息。

起始地址取值: 0-65535


长度取值: 1-123

地址访问范围(起始地址+长度): 0-65535

命令编辑	×
写4区	10H 写多字
起始地址(word):	0
长度(word):	1
注释:	
数变即发:	使能
OK OK	Cancel


3.2.1.6 配置下载

将配置下载到网关设备

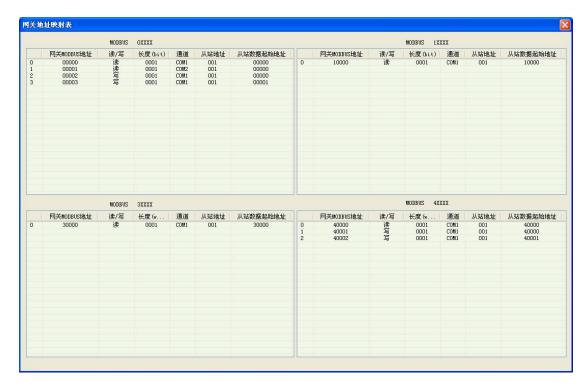
配置项目保存

将配置项目保存到.mdc 文件中。

打开配置项目

打开现有的配置项目进行编辑、下载。

默认值设置


设置从站和命令一下属性的默认值,包括数变即发是否使能、报文发送间隔、应答超时时间。

报文发送延时取值: 0-3000 应答超时时间取值: 10-3000

网关地址映射表

网关四个 MODBUS 数据区中的数据和从站配置的命令访问数据的对应关系。

从站状态

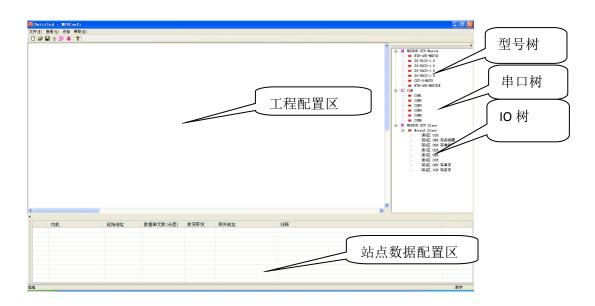
列出所有网关配置从站的控制字和状态字,并配有说明,可以通过右键菜单对从站控制字进行操作。

3.3 工程组态实例

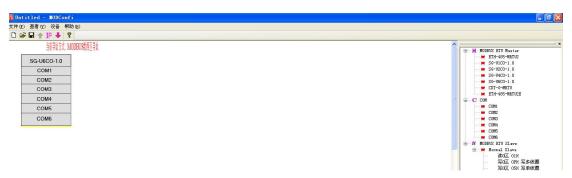

3.3.1 数据共享模式

网关在串口一侧作为 MODBUS RTU 主站来使用,在 MODBUS TCP/IP 的一侧作为服务器来使用。

3.3.1.1 工程建立与配置


下边介绍如何创建一个以 SG-U6C0-1.0 作为硬件,配置一个从站地址为 1,读 3 区 16 WORD(地址 30001-30016),4 区写 16 WORD (地址 40001-40016),MODSCAN 作为客户端,以 MODSIM 作为 MODBUS RTU 从站实例工程。

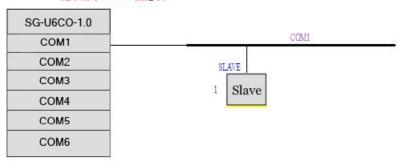
首先软件安装成功后桌面生成 MODCONFI 图标 , 鼠标左键双击图标即打开配置文件夹:



打开配置软件:

在右侧型号树中找到 ★ SG-V6CO-1.0 双击加入到工程中,如下图:

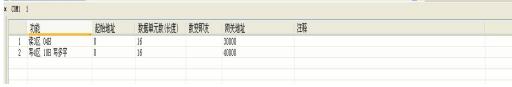
双击右侧串口树中对应的串口号, (如: COM1) 即可加入到工程中:



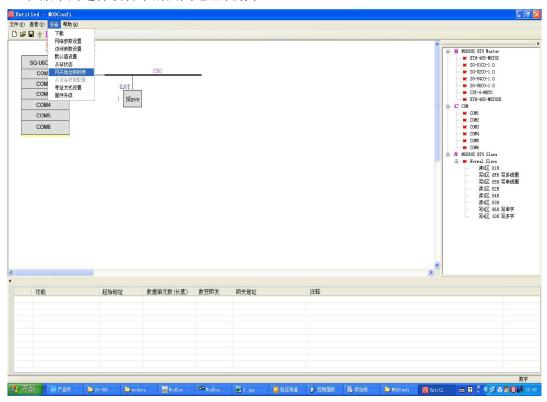
双击 COM1 弹出总线参数,可自由设定参数如:波特率、校验位、停止位,**此参数必须**与所接设备一致,否则将无法通讯。

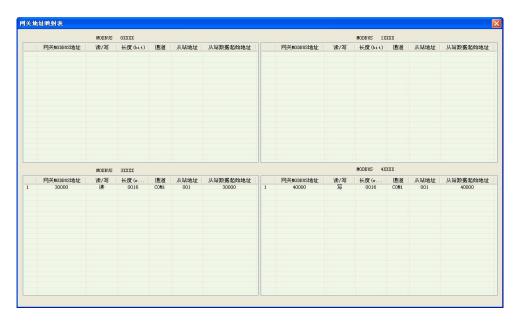
选中总线 COM1 在右侧树中找到 Normal Slave 双击将从站挂接到总线上

当前寻址方式: MODBUS数据区寻址


SLAVE | 1 Slave

致, 否则将无法通讯, 同时设置应答超时时间, 从站使能等。


选中 在右侧 I/O 树中选择对应的数据区以及数据地址与长度。如:添加 3 区读 16 WORD 地址 30001-30016 , 4 区写 16 WORD 地址从 40001-40016.分别在命令编辑对话框中输入起始地址 0 长度 16 点击 OK 。



在菜单处选择设备下的网关地址映射表:

SLAVE

查看网关地址映射关系:

从站数据起始地址即:串口 RTU 侧起始地址,网关 MODBUS 地址即:TCP/IP 侧对应的地址。

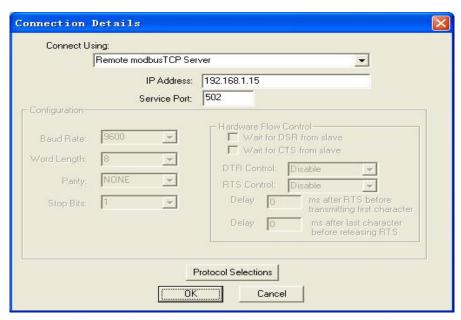
3.3.1.2 IP 地址修改

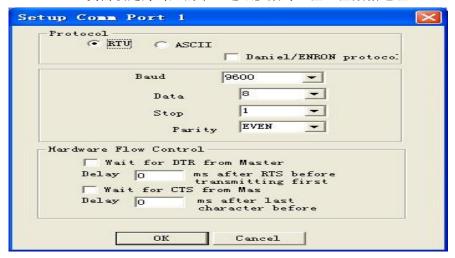
将模块拨码的 bit1 拨至 on 使用默认的 IP: 192.168.1.15 ,同时在 MODConfi 中点击菜单下的 IP 图标,弹出如下对话框,并填写目标设备的 IP 地址,即: 网关地址,点击确认。

同时需设置 PC 机 IP 地址,需与模块 IP 地址在同一网段,并通过一根并行网线将 PC 与模块网口相连,点击菜单下 设备→网络参数设置, 设置好通讯参数后点击下载配置,当出现下载完毕后,将 bit1 拨至 off,模块重新上电,模块将以修改后 IP 地址运行。

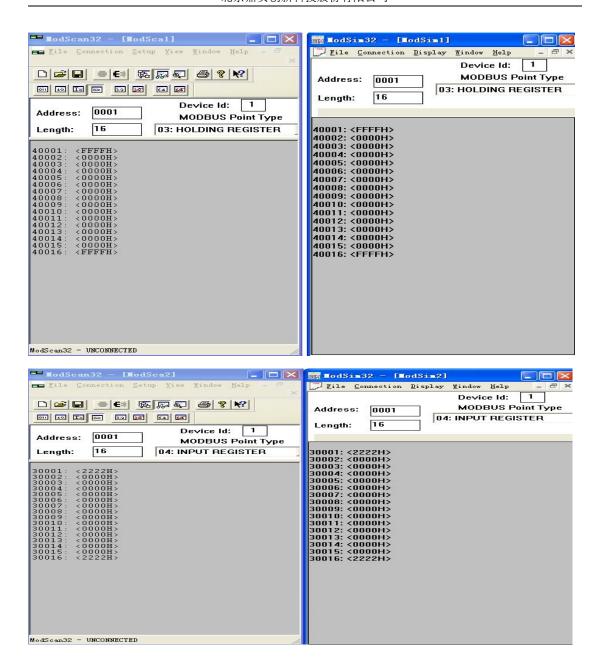
3.3.1.3 工程下载

点击菜单下的 图标,填写目标设备的 IP 地址,点击确认。点击菜单下的 进行下载。


稍后会出现下载进度对话框,


当出现下载完毕提示后模块将自动重新启动,当 SG-U6C0-1.0 串口侧与所联从站进行正常的数据交互后对应的串口指示灯闪烁。

3.3.1.4 工程调试

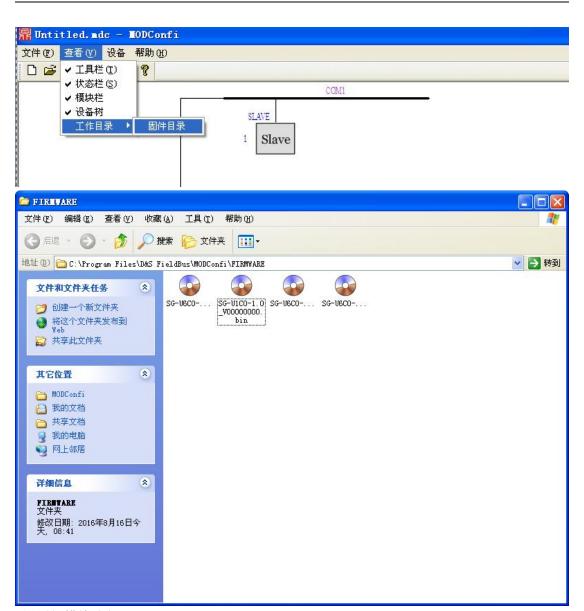

通过主站调试助手 ModScan32.exe 与从站调试助手 ModSim32.exe 进行测试。 ModScan32.exe 侧设置 SG-U6C0-1.0 模块 IP 地址,并分别建立 3 区与 4 区的数据地址。

同样在 ModSim32.exe 侧需设定好对应的串口通讯参数与 3 区 4 区数据地址。

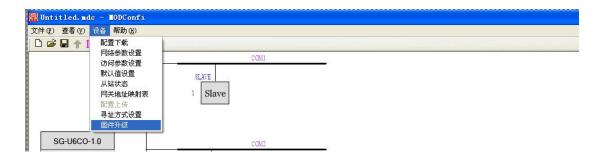
将对应数据进行对比是否一致。

3.4 固件升级

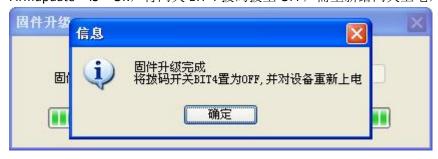
网关支持手动升级固件,需配合本公司的 MODCONFI 软件,具体升级步骤请参考本文档操作。


首先将网关拨码 BIT 1、BIT 4 拨至 ON 重新上电模块,网关液晶屏显示 RUN AS firmup mode , IP 显 示: 192.168.1.15 , 在 工 程 文 件 中 配 置 与 硬 件 相 符 的 模 块 ,

双击此模块,显示此模块的信息,并可查看设备的版本号,同时设备运行模式为:配置模式.


在菜单下选择 查看-工作目录-固件目录,打开固件存储文件夹,将需要升级的固件拷贝到此文件夹。

设置好模块访问 IP


在菜单设备栏选择固件升级,

选择固件版本,点击升级,稍后会出现进度条显示,升级期间切勿断电。

当升级成功后软件会弹出固件升级成功提示框,表明固件升级成功,同时液晶屏显示: Firmupdate IS OK,将网关 BIT 4 拨码拨至 OFF,需重新给网关上电,即完成固件升级。

第四章 有毒有害物质表

根据中国《电子信息产品污染控制管理办法》的要求出台

部件名称	有毒有害物质和元素					
	铅 (Pb)	汞 (Hg)	镉 (Cd)	六价铬 (Cr (VI))	多溴联苯 (PBB)	多溴二苯醚 (PBDE)
塑料外壳	0	0	0	0	0	0
电路板	X	0	0	0	0	0
铜螺柱	0	0	0	0	0	0
贴膜	0	0	0	0	0	0
插座/插头	X	0	0	0	0	0
拨码开关	X	0	0	0	0	0

- 0. 表示在此部件所用的所有同类材料中,所含的此有毒或有害物质均低于 SJ/T1163-2006 的限制要求;
- X: 表示在此部件所用的所有同类材料中,至少一种所含的此有毒或有害物质高于 SJ/T1163-2006 的限制要求。

注明:引用的"环保使用期限"是根据在正常温度和湿度条件下操作使用产品而确定的。

现场总线 PROFIBUS(中国)技术资格中心

北京鼎实创新科技有限公司

电话: 010-82078264、010-62054940 传真: 010-82285084 地址: 北京德胜门外教场口 1号, 5号楼 A-1室 邮编: 100120

Web:www.c-profibus.com.cn Email: tangjy@c-profibus.com.cn